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The boundary value problem for Burgers equations of compressible fluid is 
considered. Proof is given of the existence of periodic solution as the limit 
of solutions of initial boundary value problems in which the instant of initial 
data definition tends to minus infinity. 

1. Statement of the problem. Thesystemofequationsfor a 
viscous gas is converted into the generalized Burgers system [l] by neglecting in the 
equations of momentum conservation the pressure gradient. In mass Lagrangian vari- 
ables [S] that system is of the form 

Ut = p (Pr&, LQ = z&., u = p-1 (p = const >0), (1.1) 

where u is the velocity, p is the density, v is the specific volume, and p is the 
viscosity coefficient of gas. 

Unlike the known Burgers equation and the Burgers turbulence model [3], the 
generalized system allows for the compressibility of gas. The problems with initial 
data for Eqs. (1.1) was investigated in [1,4,5]. The object of the present investiga- 
tion is to prove that, if the t -periodic function f (5, t) of period T is present in 
the right-hand side of the first of Eqs. (1. l), then system (1.1) has a periodic solution 
of the same period. The existence of periodic solutions for the Burgers model and 

the Burgers turbulence model was established in [6 - 81. 
We introduce the notation 

Q = {cX, t): 2 E (0, M) = Q, t E (- c=,4) (M = const> 0) 

r = {(a, t): a E (0, M}, t E (- 009 =)I, Q = Q u r 

Let us consider the problem of determining t -periodic functions u (z, t) and 
u (1c, t) of period T such that satisfy in the band Q Eqs. (1.2) in the classical 

sense, and that at the boundary of region Q condition (1.3) is fulfilled: 

r.Q = p (pn,), + f, r+ = r&c, u = P--l ( 1.2) 

u Ir = 0 (1.3) 
Function u is furthermore subjected to the constraints 

u (5, r) > 0, (z, r> E B (1.4) 

! 
v(Z,t)dz = v, tE(- oo,oo) (V = const>O) 

The parameters M and V have the following physical meaning: b!f is the total 
mass and V the total volume of gas. 

The necessary condition of existence of a periodic solution of System (1.2) is 
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t-W 

=o, (M)EQ 

since it follows from (1.2) that 

f=-g(u-fkpIIW) 

11.5) 

fl.6) 

III what follows we, therefore, assume that condition (1.5) holds f@ function f. 
In solving the problem (1.2) - (1,4), which we shall call the R - problem, we use 
the scheme proposed in [Q] for linear parabolic equations, i, e. we shall construct the 

solution of the II -problem as the limit of initial boundary value problems in which 
the instant of initial data definition approaches - 00. For this we shall need time 
uniform estimates of the initial boundary value problems, 

2. Eltimater of the initial boundary value prob- 
1 e I& We shall call the following problem 

r% = CL (P%z), + f, nt = t&X (G t) = Qo (2.1) 

u IF = 0; 2-S (S, 0) = 0, u (z, 0) = TIM-1 z&z VfJ, rz: E b 

@II = Q n (t > 01, ro = r n V > 0)) 

the K -problem. 

If f is a fairly smooth function, there exists on any interval of time a unique 
smooth solution of the K-problem with a positive function ‘1) [4,5), and, depend- 
ing on the smoothness of f the smoothness of solution can be any, For example, if 

f E Ha@k2 (Qo), then 

u E H”‘e+ ‘*” (Qo), u E H1+@* I+‘@ (QO) (0 < a < 1) 

Subsequently we assume that f E Hasals (@). 

L e m m a 1. Let u, u be a solution of the K-problem, Then the estimate 

is valid for function u . 

P r 0 0 f. We set 
x 

wi = 1 _t (i - ‘) ’ + (3--i) 5 li (Y, s) ‘sl* i--1,2 
0 

Function zi is the solution of the problem 

[%it - p (~Z~~)~?~~ = @i - 3)ai*C0j + 2!rPa@iS + f, (2, 6 = Qo 
Zf b, = 0, zi (z, 0) = 0, i = 1, 2 

Applying to it the maximum principle, taking into account that 1 Q @i < 1 + V, 
we obtain 

(3-2~~ d I f to ‘1% (t = 1, 2) 
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from which follows estimate (2.2). 
In what follows letter c denotes a constant positive quantity that depends only on 

V, M, V, TV and f . 

L e m m a 2. If u, v is a solution of the K-problem, the relation 

o<c-l\(v<c (2.3) 

holds for function v , 

P r o o f. Integration of (1.6) with respect to t from zero to any r > 0 with 
COnditiofi (1.5) and estimate (2.2) yields 

I (In 4 I o Q c (2.41 

Moreover, owing to the integral constraint (1.8, there exists an ze (t) E. a 
such that o (zp (t), t) = V,. Hence the equality 

In v = In V, + 
s 

-&In vdx 

x0 (0 

and estimate (2.4) prove Lemma 2, and the same estimate (2.4) then yields 

IFXlOGC (2.5) 

L e m m a 3. The solution u, u of the K -problem conforms to the inequali- 
ties 

P r o o f. Scalar multiplication of the first of Eqs. (2.1) in ts (Q) by u in 

conjunction with the previously obtained estimates shows that 

ss 
u.&%hit < c 

Qt, t-f-1 
We now carry out SC&U’ multiplication of the first of Eqs, (2.1) in L* (61) bY 

LC%. which yields 

and then, having increased the right-hand side of (2.6) using Young’s inequalities and 
decreased the left-hand side using estimate (2.3), obtain 

(2*7) 

It follows from this that I (t) < c for t E IO, 11. Let us prove that this rela- 
tion is also valid for t > 1. We fix any arbitrary tl > i and introduce a reasonab- 
ly smooth function 9 (t) with the following properties: ogTI< i,n = 0 for 

tf h- 1,q=1 for t>, 5, I?' @) I< 2. We multiply (2.7) by Q and 
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integrate from tr - 1 to tl, and obtain I @r) < c* The first statement of 
the lemma is proved by the arbitrariness of t, E (1, m) , while the second is an 

obvious corollary of (2.7) and (2.1). 

T h e o r e m 1. Let 24, V be the solution of the K-problem. Then there 
exists a B E (0, 1) such that the estimate 

is valid. 

(2.8) 

P r o o f. The first assertion in (2.8) was proved in Lemma 2. Moreover, since 

hence, taking into account (2,2), (1.6), and (2.5) and Lemma 3.1 from [lo], we 

obtain the second and third inequalities of (2.8). 
To prove the last two estimates in (2.8) let us consider the first of Eqs. (2.1) as 

a linear parabolic equation for U. It was shown in [lo] that 

(2.9) 

We multiply the first of Eqs. (2.1) by the introduced earlier function rl and, 
denoting z = nu, as in(2.9) we have 

But since z = u when f > t, and 

which together with (2.9) yields 

(2.11) 

After this the fourth estimate in (2.8) can be considered as proved by reverting to 
formula(l.6). and the proof of the fifth estimate is similar to that of estimate (2.11). 

C 0 r 0 1 1 a r y, Obviously 
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since c is independent of t. 

3. Existence of a periodic solution. Let {tn} be a 
sequence such that tn + -co (n 3 oo) and {Q,} be a sequence of cylinders. 
We define u”, V” as the classic solution in Q, of the problem 

ut n = p (pnu~“)s + f9 vtn = uxn (Qn = Q x (L m)) 

Un (5, tn) = 0, Vn (5, tn) = Vo, Un Ir, = 0 (J?n = rn(t > tn)) 
(3.1) 

Let us consider sequencies {un} and {v”} on a fixed compact g” = a X 

[ -k, kl. Since for t,, < - k 

1 U” J$@ < c (k), 1 u” Iv < c (k) 

hence using the compactness of imbedding 

Hi+% (i+a)/z (8”) + Hi+% V+v)/s (Qk) (i = I, 2) 

for 0 < v < min {a, fi}, we construct subsequencies {ukn} and {ukn} such 
that for some functions uko and vko 

Ukn - r&co I$? + 0, I vkn - vr” gp 3 0 (n 3 m) (3.2) 

with the following valid estimates: 

1 uk’ $ic < CO, 1 vk” 1%’ < CO, 0 < co” < vk” < CO (3.3) 

r&k0 E Hs+v,r+v/s (43, vko E H’+“, U+“)/s (Qa) 

with the majorant co independent of k . Let us consider sequencies {Ukn} and 
{vkn} on compact Qk+l. As previously, it is again possible to separate the sub- 

sequencies {z&r} C {UF) and {v&i} C {vkn} such that after the substitution 
of k + 1 for k , relations (3.2) and estimates (3.3) are valid. Obviously the 
derived pairs {r&O, vko} and {u;+r, v;+r} are the same in 0”. 

Proceeding in the smae manner we construct for any component qk sequencies 
{uk”} and {vkn} and functions uko and vko that possess properties (3.2), 

(3.3), and 

Ukb = 
0 

uktl, vk’ = v;+l, (G 0 E Qk (3.4) 

with Ukn, vkn being the solution of problem (3.1) for some t, dependent on k. 
We define functions U” and V” as follows: 

u” (2, t) = uk” (z, t), ?,‘” (5, t) = vk” (5, t), (5, t) = q” 

Thereby u” and v” have been determined over the whole set Q and, owing 
to (3.4), their above definition is correct. We shall show that u’, V’ is a solution of 
the lJ -problem. It follows from (3.2) that functions u” and v” satisfy Eqs. 

(1.2) on any bounded set Qk, hence u”, v” is the classic solution of system (1.2) 

over the whole set Q. Conditions (1.3) and (1.4) are obviously satisfied. We have 

moreover the estimates 
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1 u” IF < co, 1 v” jp < co, 0 < co’ < u” < co (3.5) 

Let us prove that u” and v” are T-periodic functions. Since function 
Z+(a, t) = u” (z, t f T) and v1 (Z, t) = 2.P (x, t + T) also satisfy formulas 

(1.2) - (1.4). hence owing to (1.5), we have 

lL = pp%, - ~“pr%xC Uf = ux (U = U” - or, u = v” - L+) (3.6) 

from which 

(3.7) 

Equation (3.7) may be considered to be a linear parabolic equation in W with co- 
efficients whose Hblder norms for the entire band q are bounded. It was shown in 

[9] that its solution with uniform boundary conditions and bounded throughout the band 
q can only be zero. Hence w 5 0 and consequently also u f 0. Taking this 

into consideration we obtain from (3.6) that u zz 0, and thus prove that u’, v” 

is a solution of the n -problem. 
The periodicity of functions u* and r~* enables us to reinforce estimates (3.5). 

Let QT = $2 X (0, T), then from (3. ‘2) we have 

Repeating the reasomng used in proving Theorem 1 we obtain 

(3*8) 

Let us formulat the final result. 

T h e o r e m 2. Let the t -periodic function f eaapalz (QT) of period 
T satisfy condition (1.5). There exists then a solution of problem (1.2) - (1.4) 

which is t -periodic (of period T ) for which the estimates (3.8) are valid. 

The author thanks A, V, Kazhikhov for his interest in this work. 
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